Parabolic Subgroups of Semisimple Lie Groups and Einstein Solvmanifolds
نویسنده
چکیده
In this paper, we study the solvmanifolds constructed from any parabolic subalgebras of any semisimple Lie algebras. These solvmanifolds are naturally homogeneous submanifolds of symmetric spaces of noncompact type. We show that the Ricci curvatures of our solvmanifolds coincide with the restrictions of the Ricci curvatures of the ambient symmetric spaces. Consequently, all of our solvmanifolds are Einstein, which provide a large number of new examples of noncompact homogeneous Einstein manifolds. We also show that our solvmanifolds are minimal, but not totally geodesic submanifolds of symmetric spaces.
منابع مشابه
New examples of non-symmetric Einstein solvmanifolds of negative Ricci curvature
We obtain new examples of non-symmetric Einstein solvmanifolds by combining two techniques. In Tamaru (Parabolic subgroups of semisimple Lie groups and einstein solvmanifolds. Math Ann 351(1):51–66, 2011) constructs new attached solvmanifolds, which are submanifolds of the solvmanifolds correspond to noncompact symmetric spaces, endowed with a natural metric. Extending this construction, we app...
متن کاملNoncompact homogeneous Einstein manifolds attached to graded Lie algebras
In this paper, we study the nilradicals of parabolic subalgebras of semisimple Lie algebras and the natural one-dimensional solvable extensions of them. We investigate the structures, curvatures and Einstein conditions of the associated nilmanifolds and solvmanifolds. We show that our solvmanifold is Einstein if the nilradical is of two-step. New examples of Einstein solvmanifolds with three-st...
متن کاملStepwise Square Integrable Representations: the Concept and Some Consequences
There are some new developments on Plancherel formula and growth of matrix coefficients for unitary representations of nilpotent Lie groups. These have several consequences for the geometry of weakly symmetric spaces and analysis on parabolic subgroups of real semisimple Lie groups, and to (infinite dimensional) locally nilpotent Lie groups. Many of these consequences are still under developmen...
متن کاملTwo Constructions with Parabolic Geometries
This is an expanded version of a series of lectures delivered at the 25th Winter School “Geometry and Physics” in Srni. After a short introduction to Cartan geometries and parabolic geometries, we give a detailed description of the equivalence between parabolic geometries and underlying geometric structures. The second part of the paper is devoted to constructions which relate parabolic geometr...
متن کاملHigher rank Einstein solvmanifolds
In this paper we study the structure of standard Einstein solvmanifolds of arbitrary rank. Also the validity of a variational method for finding standard Einstein solvmanifolds is proved.
متن کامل